Manual do Formador - Recursos
Higiene e Segurança do Trabalho
Nuno Cunha Lopes

Recurso desenvolvido no âmbito da medida 4.2.2.2 do POEFDS. Programa co-financiado por:
1. OBJECTIVOS GLOBAIS DO CURSO ... 5
 1.1 OBJECTIVOS GERAIS E ESPECÍFICOS POR MÓDULOS DE FORMAÇÃO 5
2. PROGRAMA ... 7
3. PRÉ-REQUISITOS ... 7
4. PERFIL DO FORMADOR .. 8
5. PLANO GERAL DE DESENVOLVIMENTO DOS TEMAS 9
 DIAPPOSITIVOS ... 11
 ANEXOS DO MÓDULO 2 ... 11
 ANEXOS DO MÓDULO 3 ... 11
6. FICHAS DE TRABALHO .. 13
 6.1 FICHA DE AUTO- Avaliação Nº 1 ... 13
 6.2 FICHA DE AUTO- Avaliação Nº 2 ... 13
 6.3 FICHA DE AUTO- Avaliação Nº 3 ... 14
 6.4 FICHA DE Avaliação Final ... 15
7. GLOSSÁRIO ... 19
8. MATERIAL DE APOIO .. 23
 8.1. PROPOSTAS DE ACTIVIDADES ... 23
 8.2. EXERCÍCIOS .. 24
9. OUTROS RECURSOS .. 34
1.1 Objectivos gerais e específicos por módulos de formação

MÓDULO 1 – Atmosferas perigosas versus tratamento da entrada em espaços confinados

Objectivos gerais:
- Identificar os perigos existentes num espaço confinado.

Objectivos Específicos:
- Conhecer os cuidados a ter antes de entrar num espaço confinado.
- Compreender a necessidade da implementação de sistemas de prevenção para laboração em espaços confinados.
- Saber avaliar os riscos em espaços confinados.

MÓDULO 2 - Directiva ATEX

Objectivos Gerais:
- Dar a conhecer os conceitos envolventes às atmosferas inflamáveis.

Objectivos Específicos:
- Conhecer o tipo de actividades que podem causar problemas de atmosferas consideradas explosivas, ou com tendência para que tal possa vir a ocorrer.
Conhecer o tipo de actividades que podem causar problemas de atmosferas consideradas explosivas, ou com tendência para que tal possa vir a ocorrer.

Conhecer a directiva por forma a perceber quais a exigências formais de tal documento com vista à sua aplicação prática.

Perceber a necessidade de elaboração de metodologias de conhecimento capazes de dar a conhecer os tipos de riscos de explosão e as formas de os identificar.

Trabalhar com arvores lógicas de decisão sobre os riscos de explosão e as formas de os tratar.

Conseguir identificar os parâmetros necessários para que se formem explosões.

MÓDULO 3 – Directiva SEVESO

Objectivos Gerais:

− Conhecer os riscos adjacentes ao manuseamento, armazenamento e transporte de produtos químicos perigosos.

Objectivos Específicos:

− Identificar as exigências desta Directiva.
− Identificar as características da Directiva.
− Conhecer quais os produtos químicos a que a directiva se refere.
− Perceber a necessidade de elaboração de metodologias de conhecimento capazes de dar a conhecer os tipos de riscos e as formas de os identificar.
− Identificar e interpretar as exigências desta Directiva em matéria de preparação e resposta a emergências.
2. PROGRAMA

UNIDADE 1

NORMAS PARA ENTRADA EM ESPAÇOS CONFINADOS
ESPAÇO CONFINADO QUE REQUER AUTORIZAÇÃO DE ENTRADA

UNIDADE 2

A DIRECTIVA ATEX E O DECRETO-LEI 236/2003
INTRODUÇÃO
IDENTIFICAÇÃO DE PERIGOS E AVALIAÇÃO DE RISCOS
MEDIDAS ORGANIZACIONAIS E MEDIDAS DE PROTEÇÃO
CARACTERIZAÇÃO ESPECIFICA DAS ÁREAS DO POSTO DE ABASTECIMENTO

UNIDADE 3

A APLICAÇÃO DA DIRECTIVA SEVESO EM PORTUGAL
INTRODUÇÃO
A DIRECTIVA SEVESO

3. PRÉ-REQUISITOS

Este tema é importante tendo em linha de conta a necessidade de dotar os técnicos superiores de SHT, de ferramentas mais tecnológicas do que o trivial, adquirido nos processos de formação certificada no curso de TSHST.

Assim, os pré-requisitos para este curso são, sem sombra de dúvidas, assentes nos TSHST, já com experiência de campo. Pretende-se, no entanto, relevar que não basta ser técnico superior de SHT, pois é necessário que este destinatário de formação, seja igualmente conhecedor de processos de fábrico e de riscos inerentes à actividade de processo, normalmente existente nos sistemas de fábrico, particularmente nos que dizem respeito aos sistemas de produtos químicos. Ora, na ausência de um número significativo de indústrias químicas, este tipo de curso seria bastante limitante, pelo que independentemente de haver indústria química de processo, importa referir que os problemas associados aos produtos químicos se fazem sentir de forma horizontal, noutros sectores de actividades, quer da indústria, quer dos serviços e mesmo da agricultura. Daí que todo o contexto formativo vá ao encontro quer das atmosferas perigosas, em espaços confinados, quer dos problemas da Directiva ATEX, quer mesmo das grandes actividades de fábrico e as suas interferências com a comunidade envolvente (daí a referencia à directiva SEVESO).
Assim, seria recomendável que os destinatários desta formação tivessem algumas luzes sobre os processos químicos, mas mais do que essa vertente será necessário que seja gente de campo que tenha que trabalhar com as vertentes acima referidas: atmosferas perigosas, espaços restritos ou confinados e trabalhos em actividades dentro destes volumes limitantes.

4. PERFIL DO FORMADOR

O formador deverá ser um perito em atmosferas perigosas, preferencialmente engenheiro químico ou de mecânica, ramo termodinâmica ou ainda com formação específica que se enquadre neste perfil. Deverá ter experiência com espaços confinados, deverá ter realizado trabalhos em espaços confinados e deverá, na medida do possível, poder transmitir experiência de trabalho realizado. Os outros requisitos são os que estão normalmente destinados a formadores acreditados pelo sistema nacional de formação. Importa referir que, neste caso, não é determinante que estes técnicos sejam TSHST uma vez que, nestas áreas, os especialistas não são normalmente TSHST, mas sim peritos na indústria química de processo, na indústria petrolífera e nos outros ramos da indústria química. São portanto especialistas em processos quer de fabrico quer de armazenamento ou movimentação de cargas e também especialistas de grande craveira na área que estamos a tratar.
5. PLANO GERAL DE DESENVOLVIMENTO DOS TEMAS

Os temas em apreço, deverão ser objecto de um encadeamento, assente no seguinte:

1. Tratar o tema das atmosferas perigosas versus tratamento da entrada em espaços confinados, desenvolvendo as técnicas de acesso, as técnicas de medição e as técnicas de autorização de entrada após controlo e validação das operações a realizar naqueles espaços.

2. Tratar o tema da Directiva ATEX, em face da sua especificidade, uma vez que já tratamos o problema das atmosferas perigosas em espaços confinados e deles resultou que existem atmosferas perigosas que podem ser enquadradas na directiva ATEX e assim, eliminar ou tentar minimizar, os problemas das atmosferas perigosas de cariz inflamável. Por outro lado, os exemplos dados ao longo do processo formativo, como por exemplo, o caso tratado na especificidade, no caso de postos de abastecimento de combustíveis, é um caso especial de possibilidade de existência de risco de explosão em face da presença de gases inflamáveis e que necessitam de materiais, procedimentos especiais de tratamento deste tema com a especificidade técnica que lhe é inerente.

3. Por último e para fechar os temas, é necessário perceber o conceito inerente aos processos de fabrico de vasta dimensão técnica e tecnológica que podem conduzir a grandes acidentes. Daí o enquadramento que ambas as matérias anteriores podem ter para o tema em apreço. Assim, o tratamento de processos que se encontram enquadrados na classificação de SEVESO, são processos que podem ser tratados de forma preventiva, assentes em pequenos focos de incidente resultantes da presença de produtos inflamáveis, produtos tóxicos e deficiências de natureza mecânica dos processos e que podem prejudicar populações envolventes às instalações.

Estruturação:

O presente curso está estruturado em 3 módulos, cuja estruturação está organizada do seguinte modo:

Unidade 1 – Espaços confinados:
- Normas para entrada em espaços confinados;
- Espaço confinado que requer autorização de entrada.

Unidade 2 – Directiva ATEX:
- A Directiva ATEX e o Decreto-Lei 236/2003
- Introdução;
- Identificação de perigos e avaliação de riscos;
- Medidas organizacionais e medidas de protecção;
- Caracterização específica das áreas do posto de abastecimento;
Unidade 3 – Directiva Seveso

- A aplicação da directiva Seveso em Portugal;
- Introdução;
- A directiva Seveso.

No quadro seguinte apresenta-se a planificação de cada módulo com inclusão de todos os elementos considerados.

<table>
<thead>
<tr>
<th>Conteúdos</th>
<th>Tema</th>
<th>Métodos/Técnicas (metodologia formação)</th>
<th>Auto-Avaliação</th>
<th>Instrumentos de avaliação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Afirmativos:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Expositivo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Demonstrativo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interrogativo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ficha de avaliação Formativa n.º 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conteúdos</th>
<th>Tema</th>
<th>Métodos/Técnicas (metodologia formação)</th>
<th>Auto-Avaliação</th>
<th>Instrumentos de avaliação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A Directiva ATEX e o Decreto-Lei 236/2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Afirmativos:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Demonstrativo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introdução</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Afirmativos:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Expositivo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identificação de perigos e avaliação de riscos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Afirmativos:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Expositivo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Demonstrativo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interrogativo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ficha de avaliação Formativa n.º 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avaliação sumativa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medidas organizacionais e medidas de protecção</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Afirmativos:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Demonstrativo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caracterização específica das áreas do posto de abastecimento</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Afirmativos:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Demonstrativo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ficha de avaliação Formativa n.º 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conteúdos</th>
<th>Tema</th>
<th>Métodos/Técnicas (metodologia formação)</th>
<th>Auto-Avaliação</th>
<th>Instrumentos de avaliação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A directiva Seveso</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Afirmativos:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Expositivo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introdução</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Afirmativos:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Expositivo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A directiva Seveso</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Afirmativos:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Demonstrativo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ficha de avaliação Formativa n.º 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Como base de preparação do curso on-line foram realizados um conjunto de diapositivos, também organizados por módulos. No formato digital encontram-se na pasta, Módulos em PP:

- Módulo 1.ppt
- Modulo 2.ppt
- Modulo 3.ppt

Textos de apoio:

- Decreto-Lei 236/2003 de 30 de Setembro de 2003
- Atmosferas explosivas Guia de Boas Praticas – Comissão das comunidades Portuguesas

Textos de apoio:

- Guía para la aplicación de la Norma UNE-EN ISO 14001 en la PYME - CEPYME ARAGÓN
- Alteração da Directiva Seveso – Comissão das comunidades Portuguesas
6. FICHAS DE TRABALHO

O sistema de Avaliação é composto por 3 Fichas de auto-avaliação e por 1 ficha de avaliação final.
- Ficha de auto-avaliação n.º 1
- Ficha de auto-avaliação n.º 2
- Ficha de auto-avaliação n.º 3
- Ficha de Avaliação Final

6.1 Ficha de auto-avaliação nº 1

EXERCÍCIO DE ESCOLHA MÚLTIPLA, VERDADEIRO-FALSO, RESPOSTA MÚLTIPLA – ESPAÇOS CONFINADOS

1. (7 valores) Todos os espaços confinados devem:
- Ser sinalizados e identificados;
- Ser isolados;
- Ambas as anteriores;
- Nenhuma das anteriores.

2. (7 valores) Antes de entrar no Espaço Confinado, o mesmo deve ser inspeccionado e serem identificados os riscos específicos existentes, dentre eles podemos encontrar:
- Enriquecimento de oxigénio;
- Deficiência de oxigénio;
- Riscos tecnológicos.

3. (6 valores) Quais as responsabilidades do empregador quando falamos de espaços confinados?
- Identificar os riscos gerais e específicos de cada espaço confinado;
- Implementar a gestão em segurança e saúde no trabalho de forma a garantir raramente ambientes e condições adequadas de trabalho;
- Garantir a capacitação permanente dos trabalhadores sobre os riscos, as medidas de controle, de emergência e resgate em espaços confinados.

6.2 Ficha de auto-avaliação nº 2

EXERCÍCIO DE ESCOLHA MÚLTIPLA, VERDADEIRO-FALSO, RESPOSTA MÚLTIPLA – DIRECTIVA ATEX

1. (4 valores) Podem ocorrer explosões em locais onde estejam presentes:
- Matérias primas inflamáveis;
- Produtos intermédios não inflamáveis;
- Produtos finais e resíduos inflamáveis.
2. (4 valores) A finalidade da directiva é dar indicações referentes ao domínio da protecção contra explosões para:
- Identificação dos perigos e avaliação de riscos na soldadura;
- Estabelecimento de medidas específicas de protecção da segurança e saúde dos trabalhadores expostos a riscos derivados de atmosferas explosivas;
- Garantir que o ambiente de trabalho seja isento de químicos perigosos.

3. (4 valores) Quais as actividades potencialmente perigosas nesta área?
- Indústria transformadora de madeiras
- Prestação de serviços;
- Operações de pintura.

4. (4 valores) O que se tem que fazer na avaliação dos riscos de explosão?
- Avaliar as consequências de uma explosão;
- Garantir que o ambiente de trabalho seja isento de químicos perigosos.
- Averiguar da presença de fontes de ignição e a possibilidade de estas se tornarem efectivas.

5. (4 valores) Como prevenir a formação de atmosferas explosivas perigosas?
- Substituindo as substâncias inflamáveis;
- Aumentando a concentração;
- Inertizando.

6.3 Ficha de auto-avaliação nº 3

EXERCÍCIO DE ESCOLHA MÚLTIPLA, VERDADEIRO-FALSO, RESPOSTA MÚLTIPLA – DIRECTIVA SEVESO

Assinale as afirmações correctas:

1. (5 valores) O que pode ser considerado risco ambiental para a actividade industrial?
- A probabilidade de que se produza um efeito específico num período de tempo determinado ou em circunstâncias determinadas;
- A probabilidade de que se produza um efeito específico num período de tempo determinado ou em circunstâncias indeterminadas;
- A possibilidade de que o retorno real de um investimento seja diferente do esperado.

2. (5 valores) O que é risco ambiental?
- Risco para o meio ambiente;
- Relação entre gravidade e probabilidade de ocorrência de um impacto negativo sobre a envolvente do local;
- Relação entre gravidade e probabilidade de ocorrência de um impacto positivo sobre a envolvente do local;

3. (5 valores) Quais os novos riscos ambientais?
- Riscos tecnológicos;
- Riscos de mercado;
- Riscos de reputação.
4. (5 valores) O risco ambiental valoriza-se em função de:
- Gravidade e consequência;
- Probabilidade e das consequências;
- Ocorrência e consequência.

6.4 Ficha de Avaliação Final

Parte 1 – Espaços confinados (9 valores)

1. O que entende por espaço confinado?
2. Em caso de Acidente que tipo de estrutura deverá estar prevista para garantir assistência aos envolvidos?
3. Que actividades podem potenciar a presença de riscos em espaços confinados?

Parte 2 – Directiva ATEX (6 valores)

Parte 3 – Directiva Seveso (5 valores)

5. Comente a seguinte afirmação: “O case study de Bhopal é, sem sombra de dúvidas, um dos mais significativos na viragem dos conceitos de segurança associados à indústria química.”

RESOLUÇÃO

Parte 1 – Espaços confinados

O que entende por espaço confinado? (3 valores)
- Espaço confinado é todo o espaço volumétrico (1 valor)
- Onde existe o risco de se encontrar uma atmosfera perigosa, podendo fazer perigar a vida humana em caso de sofrer intrusão (1 valor)
- Sem cuidados especiais (1 valor).

Em caso de Acidente que tipo de estrutura deverá estar prevista para garantir assistência aos envolvidos? (3 valores)
- A estrutura que deverá ser objecto de tratamento específico para os riscos envolventes a acidentes em espaços confinados deverá estar prevista no âmbito do PEI (Plano de Emergência Interno) (1 valor)
- Deverá fazer prever essencialmente os meios capazes de resgatar no mais curto espaço de tempo eventuais envolvidos em riscos de envenenamento, anóxia ou entalamento (1 valor).
- Sendo que nestes casos o risco deve ser avaliado antes da entrada e nunca deverá ser tratado à posteriori, em regime de resposta ao sinistro (1 valor).
Que actividades podem potenciar a presença de riscos em espaços confinados? (3 valores)

- Da definição do risco de um espaço confinado, encontra-se uma característica comum: existe ou deficiência de oxigénio, ou inflamabilidade da atmosfera ou toxicidade na mesma. Assim, o que nos cria problemas num espaço confinado é a presença de uma destas condições (1 valor).
- O que envolve naturalmente condições especiais de tratamento dessa atmosfera, a fim de nela podermos entrar, permanecer como espaço de trabalho mesmo que temporário e dela sair sem problemas de saúde. Ora aqui está a chave do problema! Podemos estar na presença de gases asfixiantes, tóxicos inflamáveis ou na presença de uma mistura de todos eles (1 valor).
- O que interessa neste caso é a forma como os identificamos, avaliamos a condição da atmosfera e depois tratamos o problema com vista a permitir a entrada segura de pessoas para realizar as tarefas. A ausência de oxigénio é um problema que pode ser resolvido com ventilação forçada do espaço (1 valor).

Parte 2 – Directiva ATEX

Quais os principais riscos referentes a atmosferas perigosas? Relacione atmosferas quentes em espaços abertos e em espaços confinados. (6 valores)

- Condições extremas tornam mais agudo o problema das atmosferas contaminadas em espaços confinados (1 valor), uma vez que é difícil ocorrer difusão térmica e quase impossível ter lugar a renovação das condições de ar respirável, com a consequente diminuição das concentrações de contaminantes (1 valor).
- Um caso típico de concentração elevada de contaminantes é o que ocorre nos casos em que existem problemas de incêndios em edifícios ou espaços restritos e o que ocorre com os incêndios em campo aberto, uma vez que estamos, em ambos os casos, na presença de gases tóxicos e de temperaturas elevadas (1 valor) e, em ambos os casos, podemos encontrar situações que configuram o risco de perda de vidas humanas, quer pela contaminação devido à concentração elevada de gases tóxicos, quer ainda em face da condição de temperatura extrema (1 valor).
- Os incêndios nas zonas onde estes se situam, em espaços fechados, podem atingir temperaturas que podem rondar os 600 a 1000 °C e as temperaturas no exterior podem igualmente, a uma distância relativamente curta, atingir temperaturas da ordem das centenas de graus (1 valor).
- A diferença fulcral nos incêndios em campo aberto tem a ver com o fluxo radiante que se gera em incêndios com chamas de dimensão significativa, de várias dezenas de m², o que pode provocar fluxos radiantes da ordem de grandeza das dezenas de kW/m² o que gera invariavelmente intolerância dos organismos vivos a esta exposição por períodos alongados no tempo e neste caso da ordem dos poucos minutos (1 valor).
Parte 3 – Directiva Seveso

Comente a seguinte afirmação: “O case study de Bhopal é, sem sombra de dúvidas, um dos mais significativos na viragem dos conceitos de segurança associados à indústria química.” (5 valores)

- O case study de Bhopal é, sem sombra de dúvidas, um dos mais significativos na viragem dos conceitos de segurança associados à indústria química (1 valor).
- Infelizmente, foi necessário criar um gueto de milhares de vítimas de produtos químicos libertados em face de processos químicos fora de controlo. A presença de grandes actividades químicas, com elevadas concentrações de produtos químicos num só local e com produtos de elevada capacidade de danos para a saúde humana, são o factor de risco mais significativo que se encontra neste tipo de actividade (1 valor).
- É lógico que este acidente virou uma página na indústria química e obrigou a que as indústrias químicas passassem, por requisito legal, a serem obrigadas a controlo preciosista dos seus processos químicos (1 valor).
- Sem dúvida, esse foi o contributo para a humanidade que a Índia e particularmente a cidade de Bhopal teve para com o mundo (1 valor).
- O assunto não está morto e a Union Carbide, está neste momento obrigada a grandes indemnizações em face do acidente, mas o sofrimento das populações, a contaminação dos solos e a existência de muitas mortes não há indemnização que possa compensar (1 valor).
7. GLOSSÁRIO

Autorização de Entrada - É o documento escrito ou impresso que é fornecido pelo empregador, para autorizar a entrada e controlá-la, num espaço confinado e que contenha informações especificadas para a Autorização de Entrada.

Autorização de Trabalhos a Quente - É uma autorização escrita do empregador para permitir operações (p. ex. rebitamento, soldadura, corte, chama e aquecimento) capaz de fornecer uma fonte de ignição.

Atmosfera deficiente de oxigénio - É a atmosfera contendo menos de 19,5% de oxigênio em volume.

Atmosfera enriquecida de oxigénio - É a atmosfera contendo mais de 23,5% de oxigênio em volume.

Atmosfera perigosa - É a atmosfera que pode expôr os trabalhadores ao risco de morte, incapacidade, restrições na capacidade de auto – resgate (que significa escapar sem ajuda, de um espaço confinado), dano ou doença grave causada por uma ou mais das seguintes causas:

Avaliação - É o processo pelo qual os riscos aos quais os trabalhadores possam estar expostos, num espaço confinado, são identificados e avaliados. A avaliação de um espaço confinado inclui a especificação dos testes que devem ser realizados e os critérios que devem ser utilizados.

Condição aceitável de entrada - São as condições que devem existir num espaço confinado autorizado, que garanta a condição de entrada e assegure que os trabalhadores envolvidos na entrada num Espaço Confinado que Requeira Autorização de Entrada, possam entrar e executar suas funções de forma segura no seu interior.

Condição Imediatamente Perigosa para a Saúde ou para a Vida (CIPSV) - É qualquer condição que cause uma ameaça retardada ou imediata à vida, ou que causaria efeitos adversos irreversíveis para a saúde ou que interferiria com a capacidade dos indivíduos para escaparem de um espaço confinado sem ajuda.

Condição Proibitiva - Qualquer condição num espaço confinado, que não seja permitida durante o período para o qual a entrada é autorizada.

Emergência - É qualquer ocorrência (incluindo qualquer falha nos equipamentos de controle e monitorização de riscos) ou evento interno ou externo, que ocorra num espaço confinado, que possa causar perigo aos trabalhadores.

Engolfamento ou afogamento (Envolvimento) - É quando uma substância sólida ou líquida finamente dividida (flutuante no ar) possa envolver e capturar efetivamente uma pessoa e que, no processo de inalação, possa causar morte por obstrução do sistema respiratório.
Entrada - É a acção pela qual as pessoas passam através de uma abertura de entrada para o interior de um Espaço Confinado que Requer Autorização de Entrada. A entrada inclui-se, como resultado do trabalho no espaço confinado e deverá ser considerado, como tendo ocorrido logo que alguma parte do corpo do trabalhador rompa o plano de uma abertura no espaço confinado.

Espaço Confinado Não – Permitido - É um espaço confinado que, em respeito aos riscos atmosféricos, tem o potencial de conter qualquer risco capaz de causar morte ou dano físico grave e deve estar proibido para a entrada de trabalhadores.

Espaço Confinado - É um local suficientemente grande e de tal forma configurado que um trabalhador possa entrar com o corpo e desenvolver um trabalho definido. Possui entradas ou saídas restritas ou limitadas. P.ex. tanques, depósitos abertos e fechados, silos, armazéns de produtos a granel, tremonhas, contentores, caldeiras, reactores químicos, condutas de ventilação, depósitos, túneis, galerias e caixas subterrâneas, poços, e fossos. Não é projectado para utilização ou ocupação contínua.

Inertização - É a alteração da condição da atmosfera num espaço confinado, conseguido com a utilização de um gás não combustível (tal como o azoto gasoso) de modo que tal operação resulte numa atmosfera não combustível.

Isolamento - É o processo pelo qual um espaço autorizado é colocado fora de serviço e é protegido completamente contra a libertação de energia e materiais para o interior do espaço confinado, por meios tais, como o fecho, a vedação, a montagem de juntas cegas; o desalinhamento ou remoção de condutas, linhas ou tubagens; bloqueio duplo e sangria do sistema; lacragem e/ou bloqueamento de todas as fontes de energia; ou bloqueio e desmontagem de todas as interligações mecânicas.

Programa de Espaço Confinado que Requer Permissão de Entrada - É um programa geral do empregador, para controlar e, onde apropriado, para proteger os trabalhadores dos riscos de espaços confinados autorizados e para regulamentação da entrada dos trabalhadores nestes espaços.

Retenção - Surge quando uma determinada configuração ou condição operacional no espaço confinado possa prender o trabalhador e exercer força suficiente no corpo, que possa causar morte por estrangulamento, constrição, esmagamento ou dilaceração. Também se aplicam condições que possam libertar energia capaz de causar morte por electrocusão e queimaduras.

Ruptura de Linha - É a abertura intencional de um tubo, linha ou conduta, que é ou tenha sido transportadora de substâncias tóxicas, corrosivas ou inflamáveis, um gás inerte ou qualquer fluido num volume, pressão ou temperatura capaz de causar dano.

Sistema de Autorização - É o procedimento escrito do empregador para a preparação e emissão da autorização de entrada. Permite igualmente o retorno ao serviço no espaço confinado autorizado após o término da entrada.

Serviço de Busca - É a equipe designada para resgatar os trabalhadores dos espaços confinados autorizados.
Supervisor de Entrada - É a pessoa (tal como o empregador, gerente ou chefe de equipe) responsável pela determinação se as condições de entrada são aceitáveis e estão presentes numa Autorização de Entrada, garantindo-se que a entrada é planeada, autorizada, supervisionada e finalizada como determina esta norma.

Sistema de Busca - É o equipamento (incluindo linha de busca, cinto de corpo inteiro ou tórax, pulseiras, se apropriado e um dispositivo de alagem ou tripé) usado pela equipa de buscas nos espaços confinados autorizados.

Trabalhador autorizado - É o trabalhador que é autorizado pelo empregador a entrar num espaço confinado permitido.

Vigia - É o indivíduo localizado fora de um ou mais “espacos confinados autorizados” que controla os trabalhadores autorizados e que realiza todos os deveres de um vigia definido no programa de espaço confinado autorizado.
8. MATERIAL DE APOIO

8.1. PROPOSTAS DE ACTIVIDADES

Atmosferas perigosas – analisar, com recurso a informação de um espaço confinado - por exemplo uma linha de efluentes de sistema sanitário municipal, os cuidados a ter na entrada em espaços confinados, criando um conjunto de procedimentos que levem o formando a criar as regras para entrada num espaço confinado e quais os pressupostos para a autorização de entrada.

Directiva ATEX: o campo de estudo aqui é vasto mas da mesma forma que no manual do formando se analisa um estudo de caso para uma gasolineira, pode-se fazer um mesmo tipo de abordagem para uma fabrica de rães ou um sistema de despoeiramento de uma fabrica de serração/ carpintaria. Neste caso o objectivo é sensibilizar o formando para a abordagem metodológica que é necessária ter para conseguir perceber que o tema tem de ser estudado de uma forma organizada e com um enquadramento tipificado.

Directiva SEVESO: é importante que o formando crie um processo de abordagem ao plano de emergência de uma instalação que possa eventualmente ter armazenadas quantidades significativas de um produto que entre na listagem do anexo 1 da directiva, para que estes elementos possam servir como base para um estudo mais aprofundado que balize os planos de emergência externos e internos.
8.2. EXERCÍCIOS

EXERCÍCIO 1

Para consolidarmos os conhecimentos adquiridos, sugere-se que o formando reflita sobre as seguintes perguntas:

- O que se entende por espaço confinado?
- Por que é que é necessária autorização especial para entrada em espaços confinados?
- O que é que a legislação portuguesa prevê em termos de obrigatoriedade de garantia de segurança para a execução de trabalhos em espaços confinados?
- Em caso de acidente que tipo de estrutura deverá estar prevista para garantir assistência aos envolvidos?

Resposta:

Espaço confinado é todo o espaço volumétrico onde existe o risco de se encontrar uma atmosfera perigosa, podendo fazer perigosa a vida humana em caso de este sofrer intrusão sem cuidados especiais.

A autorização é necessária em face do risco para vida que um local deste tipo pode eventualmente configurar, sendo assim necessário considerar a possibilidade de análise da condição de risco da atmosfera.

A legislação portuguesa é omissa em termos de legislação sobre espaços confinados, mas obriga a que os empregadores sejam responsáveis, na generalidade, pelos riscos que fazem correr os seus funcionários. Assim sendo, os primeiros são obrigados pelo Dec. Lei 441/91 e subsequentes (Código do Trabalho) a proporcionarem condições de segurança aos seus trabalhadores e executar as necessárias análises às condições de perigosidade inerentes a tais locais.

A estrutura que deverá ser objecto de tratamento específico para os riscos envolventes a acidentes em espaços confinados deverá estar prevista no âmbito do PEI (Plano de Emergência Interno) e deverá fazer prever essencialmente os meios capazes de resgatar no mais curto espaço de tempo eventuais envolvidos em riscos de envenenamento, anóxia ou entalamento, sendo que nestes casos o risco deve ser avaliado antes da entrada e nunca deverá ser tratado à posteriori, em regime de resposta ao sinistro.
EXERCÍCIO 2

Para consolidarmos os conhecimentos adquiridos, vamos responder às seguintes perguntas:

Que tipo de espaços confinados existem?
Que atividades podem potencializar a presença de riscos em espaços confinados?
Que produtos podem ser encontrados nos espaços confinados e que possam ser alvo de consideração especial em termos de tratamento dos espaços confinados?
Que processos de ventilação podem estar presentes para evitar a contaminação das atmosferas perigosas dos espaços confinados?

Resposta:

Os espaços confinados possuem uma característica muito própria, pois são espaços que possuem limitações à renovação de ar e, consequentemente, à difusão e diminuição de concentração dos agentes contaminantes existentes num determinado local, em resultado do processo em que esses espaços volumétricos se inserem. Nesta situação, não é difícil encontrar as mais diversas características para espaços considerados confinados, uma vez que os exemplos são inúmeros, e vão desde uma câmara frigorífica, a um sistema de efluentes líquidos de um município, um tanque de vinho ou uma fossa céptica. Os silos de cereais são outro caso, mas podemos encontrar locais de volumetria elevada e que pelas suas deficientes características de renovação de ar podem vir a ser incluídos como espaços confinados, onde a permanência da vida animal pode vir a estar em causa.

Da definição do risco de um espaço confinado, encontra-se uma característica comum: existe ou deficiência de oxigênio, ou inflamabilidade da atmosfera ou toxicidade na mesma. Assim, o que nos cria problemas num espaço confinado é a presença de uma destas condições, o que envolve naturalmente condições especiais de tratamento dessa atmosfera, a fim de nela podermos entrar, permanecer como espaço de trabalho mesmo que temporário e dela sair sem problemas de saúde. Ora aqui está a chave do problema! Podemos estar na presença de gases asfixiantes, tóxicos inflamáveis ou na presença de uma mistura de todos eles. O que interessa neste caso é a forma como os identificamos, avaliamos a condição da atmosfera e depois tratamos o problema com vista a permitir a entrada segura de pessoas para realizar as tarefas. A ausência de oxigênio é um problema que pode ser resolvido com ventilação forçada do espaço. A presença de gases tóxicos ou
inflamáveis, é resolúvel com processos de lavagem e desgaseificação desses espaços volumétricos e os métodos são desde já conhecidos e tecnicamente perfeitamente dominados.

Os processos de desgaseificação, são normalmente processos que têm que ser considerados e analisados de forma técnica, uma vez que nem sempre nos encontramos na presença do mesmo tipo de gases, pois existem gases mais leves que o ar, ou mais pesados que o ar, e nesses casos a situação é igualmente muito diferenciada; depois existe um problema mais grave ainda, que é o da possibilidade de existirem processos que podem envolver riscos de inflamabilidade devido à existência de cargas estáticas nos processos de movimentação de fluidos gasosos, e para tal, é necessário usar técnicas de realização de descargas estáticas, entre outras medidas técnicas. Normalmente nestes casos, quer estejamos a tratar uma atmosfera com problemas de contaminação com produtos tóxicos ou gases inflamáveis, a situação obriga à existência de um processo de extracção dos gases por aspiração e consequentes entradas de ar para que, sem perturbações, seja possível retirar todos os gases, quer do fundo do compartimento, quer do topo do mesmo. Estas operações podem envolver longos períodos de tempo e são normalmente controladas com recurso a aparelhos de análise de gases, tais como explosímetros, analisadores de oxigénio e analisadores de gases tóxicos.

Os processos de ventilação que se conhecem são de dois tipos, e são respectivamente um de diluição e outro de aspiração localizada. O primeiro serve-se da qualidade do ar se permitir facilmente misturar com a maior parte dos gases e em consequência dessa situação, ser possível misturar. Dessa mistura com alimentação de ar em contínuo resulta um processo de diluição, com a consequente diminuição de concentração de gases contaminantes; o segundo processo de aspiração localizada, serve-se da característica intrínseca dos sistemas de aspiração, que permitem sem recurso a quaisquer perturbações da atmosfera envolvente, aspirar localmente e desse processo permitir-se a renovação de ar com total separação entre gases de diferentes densidades.
EXERCÍCIO 3

Para consolidarmos os conhecimentos adquiridos, vamos analisar as seguintes questões:

Quais os principais riscos referentes aos tipos de atmosferas perigosas envolvendo temperaturas extremas em espaços confinados? Tente caracterizar esta condição estabelecendo comparações entre atmosferas quentes em espaços abertos e em espaços confinados.

Neste caso tente lembrar-se do que pode vir a ser um problema de afogamento num silo ou num tanque, e quais as medidas de precaução que deverá tomar para evitar este tipo de acidente. Não esqueça que se for sozinho vítima do um processo de queda num local deste tipo não tem como alertar ninguém!

Repita que deverá pensar como é que as superfícies enгорoadas lhe podem causar traumatismos de diversa ordem! Pense igualmente que nas espaços confinados não tem muita liberdade para se permitir movimentar-se e criar situações de auto-defesa em termos de movimento. Pense nas precauções a tomar e coloque-as por escrito num létreiro em frente do seu local de trabalho! De repente vai acrescentar mais algumas!

Resposta:

Os riscos inerentes a espaços confinados em que se possam encontrar condições extremas de temperaturas, inserem-se num conjunto de riscos variados capazes de ser encontrados em locais como, por exemplo, câmaras de combustão de caldeiras, onde a presença de calor e temperaturas muito elevadas, assim como a presença de muitos gases (ali presentes em face da existência de contaminantes de níveis de toxicidade muito elevados), permitem inferir riscos elevados para a capacidade humana, tendo em linha de conta que as limitações do corpo humano para a permanência nesses locais, mesmo protegidos em períodos de tempo muito limitados, uma vez que a resistência ao calor é muito limitada para o organismo humano. Assim, condições extremas tornam mais agudo o problema das atmosferas contaminadas em espaços confinados, uma vez que é difícil ocorrer difusão térmica e quase impossível ter lugar a renovação das condições de ar respirável, com a consequente diminuição das concentrações de contaminantes.

Um caso típico de concentração elevada de contaminantes é o que ocorre nos casos em que existem problemas de incêndios em edifícios ou espaços restritos e o que ocorre com os incêndios em campo aberto, uma vez que estamos, em ambos os casos, na presença de gases tóxicos e de temperaturas elevadas e, em ambos os casos, podemos encontrar situações que configuram o risco de perda de vidas humanas, quer pela contaminação devido à concentração elevada de gases tóxicos, quer ainda em face da condição de temperatura extrema. Os incêndios nas zonas onde estes se situam, em espaços fechados, podem atingir temperaturas que podem rondar os 600 a 1000 °C e as temperaturas no exterior podem igualmente, a uma distância relativamente curta, atingir temperaturas da ordem das centenas de graus. A diferença fulcral nos incêndios em campo aberto tem a ver com o
fluxo radiante que se gera em incêndios com chamas de dimensão significativa, de várias dezenas de \(m^2 \), o que pode provocar fluxos radiantes da ordem de grandeza das dezenas de \(kW/m^2 \) o que gera invariavelmente intolerância dos organismos vivos a esta exposição por períodos alongados no tempo e neste caso da ordem dos poucos minutos.

O problema dos afogamentos em silos é um assunto já recorrente e que, infelizmente, tem trazido vários exemplos de mortes por afogamento dentro destes equipamentos, quer estejamos a referir-nos às zonas rurais, onde os silos existem como armazenamento das propriedades agrícolas, quer nas instalações industriais, onde a existência de equipamentos deste tipo permitem o armazenamento a granel dos produtos granulares ou pulverulentos.

O mecanismo de afogamento dá-se porque, por um lado, o meio em que a vítima se vai colocar permite uma dinâmica de reconfiguração rápida das partículas que constituem o meio de afogamento, facilmente permitindo o afundamento da vítima. Por outro lado ocorre, igualmente, um outro problema que é de não existir um mecanismo pessoal que permita a vinda ao de cima num meio granular, o que por exemplo pode suceder num meio líquido cuja densidade seja mais ou menos próxima de 1 (caso de soluções aquosas). Com estas limitações, a entrada em espaços deste tipo com meios granulares das mais diversas granulometrias é proibida, porque o risco de morte é quase total. Caso uma pessoa se afunde no meio em causa, a sua incapacidade de respirar é total e morre por afogamento, ainda mais reforçado pelo facto de que após o afundamento se torna impossível qualquer movimentação da caixa torácica, mesmo que existisse ar ou intervalos que lhe permitissem respirar através do grão.

Caso seja imperativa a entrada num destes equipamentos, essa entrada carece de uma análise, de equipamentos de protecção individual que permitam a entrada como se se tratasse de um trabalho em altura. No caso de precaver os aspectos relacionados com o ar respirável, então um dos problemas que terá que ser acautelado é o de prever a entrada com equipamento autónomo de respiração ou com ar assistido do exterior, sempre proibindo a entrada sem a presença de pessoas em apoio e de certificação da condição de segurança de tal espaço.

Os espaços confinados são locais onde, normalmente, a liberdade de movimentos é condicionada, quer pela não presença de corredores preferenciais para circulação humana (uma vez que esses espaços não são para ter gente), porque poderão estar presentes produtos ou objectos que poderão interferir na liberdade de movimentos das pessoas, quando estas tenham necessidade de neles se introduzirem. As gorduras e os produtos gordurosos são elementos que aumentam os factores de risco contribuintes para os processos de quedas ao nível do solo em face da existência de processos desequilibrantes, condicionadores de movimentos francos nos espaços em causa.

Como se sabe, a gestão do equilíbrio dos movimentos do corpo humano é um processo que resulta da capacidade de auto movimentação, que gera movimentos compensatórios dos desequilíbrios gerados por circunstâncias adversas. Ora, em espaços confinados, essa situação é mais um factor limitador, porque muitas vezes as quedas resultam da impossibilidade de criação de movimentos capazes de gerar equilíbrios, o que induz um problema na presença de pessoas em locais com muito pouco espaço disponível, levando a que as próprias peças de vestuário de protecção tenham de incluir elementos almofadados para permitir uma melhor prestação de movimentos em quatro ou três apoios (andar de gatas).
EXERCÍCIO 4

Resposta:

Este tema é um espaço aberto para que o formando possa, através de leituras diversas fazer, em face da existência de acidentes com significativa notoriedade, algumas reflexões. Para tal, passo a descrever o que foi, por exemplo, Chernobil e continuará a ser em situação de clara falha humana.

Chernobil, foi um acidente nuclear de dimensão internacional, que colocou em causa todo o processo de desenvolvimento da matriz nuclear de paz, no mundo. Não foi de longe o primeiro acidente nuclear de que há notícia, mas foi o acidente nuclear com mais notoriedade e com efeitos bem presentes na memória dos povos europeus.

O que se passou foi, tão simplesmente, um erro humano que levou a uma interpretação errônea de operadores, por falta de passagem de testemunho quando em turnos rotativos. Infelizmente, o processo decorreu sob um regime que, por não ser aberto, envolveu problemas nos outros países pois, a informação do acidente somente dois dias depois da ocorrência, colocou em sobreaviso os países mais próximos e igualmente vítimas das influências meteorológicas das partículas radioactivas que se espalharam por toda a Europa Central, tendo mesmo chegado alguns sinais à Península Ibérica. Poderia ter sido evitado este acidente? Sem dúvida que, se analisarmos todo o processo, uma instalação deste tipo não pode ter falhas daquela tipologia, mas a verdade é que ainda hoje paira sobre Chernobil o risco grave da inactividade do reactor nuclear, que está submerso sob uma camada de betão, tendo sido na altura a única forma mais expedita de evitar uma catástrofe ainda de maiores dimensões. O que fazer à posteriori é um assunto que decerto tem que preocupar a comunidade internacional, sob risco que esta venha, mais uma vez, a ser vítima dos escombros do que foi uma central de bandeira do regime soviético e que possa vir a contaminar mais área
geográfica do que aquela que já contaminou. O assunto não está morto e confere preocupação em termos de segurança a quem pensa sobre estes temas.

No entanto, o que se pretende evitar com esta reflexão é como, à nossa escala, podemos contribuir para diminuir o risco das nossas instalações e não é por acaso que tão vastamente se têm abordado os temas da segurança, sempre percebendo o papel determinante dos processos de análise de riscos.
EXERCÍCIO 5

Resposta:

Casos reais a estudar com mais detalhe são:

- Acidente com produtos químicos: SEVESO- ITALIA
- Acidente com produtos químicos: Bhopal – Índia
- Acidente nuclear: Three Mile Island - USA
- Colapso de mina de carvão em Aberfan: South Wales - Grã Bretanha
- Acidente de uma plataforma petrolífera: Piper Alpha - Grã Bretanha
- Acidente com incêndio em depósito de combustíveis: Bruncefield - Grã Bretanha

Estes acidentes encontram-se nas pesquisas de sinistros em sites; como por exemplo:

- http://en.wikipedia.org/wiki/Piper_Alpha
- http://home.versatel.nl/the_sims/rig/pipera.htm
- http://www.hse.gov.uk/comah/accidents.htm

Entre outros sites disponíveis na WEB
EXERCÍCIO 6

Resposta:

O case study de Bhopal é, sem sombra de dúvidas, um dos mais significativos na viragem dos conceitos de segurança associados à indústria química. Infelizmente, foi necessário criar um gueto de milhares de vítimas de produtos químicos libertados em face de processos químicos fora de controlo. A presença de grandes actividades químicas, com elevadas concentrações de produtos químicos num só local e com produtos de elevada capacidade de danos para a saúde humana, são o factor de risco mais significativo que se encontra neste tipo de actividade. É lógico que este acidente virou uma página na indústria química e obrigou a que as indústrias químicas passassem, por requisito legal, a serem obrigadas a controlo preciosista dos seus processos químicos. Sem dúvida, esse foi o contributo para a humanidade que a Índia e particularmente a cidade de Bhopal teve para com o mundo. O assunto não está morto e a Union Carbide, está neste momento obrigada a grandes indemnizações em face do acidente, mas o sofrimento das populações, a contaminação dos solos e a existência de muitas mortes não há indemnização que possa compensar!

Este caso de estudo pode ser objecto de uma reflexão mais profunda, pesquisando em livros da especialidade colocados no final no texto, na zona reservada a bibliografia.

Bibliografia de consulta
Livros mais significativos:
Trevor Kletz, Handbook of Toxic Materials Handling and Management, Marcel Dekker, New York, 1994
Trevor Kletz, Lessons From Disaster: How Organizations Have no Memory and Accidents Recur, co-published by Institute of Chemical Engineers, Rugby, UK 1993

Sites mais significativos:
http://en.wikipedia.org/wiki/Piper_Alpha
http://home.versatel.nl/the_sims/rig/pipera.htm
http://en.wikipedia.org/wiki/Seveso_disaster
http://www.hse.gov.uk/comah/accidents.htm
www.tno.nl/
http://mahbsrv.jrc.it/
http://www.gulin.com.br/manuais-confinadas.htm
9. OUTROS RECURSOS

Sugere-se a consulta da legislação existente sobre o assunto e depois uma consulta na Internet sobre os vários temas.

BIBLIOGRAFIA

- Dec Lei nº 263/2003 de 30 de Setembro – Prescrições mínimas de protecção e segurança dos trabalhadores expostos a riscos derivados de atmosferas explosivas
- Dec. Lei nº 112/96 de 5 de Agosto – Condições a que devem obedecer os equipamentos eléctricos ou mecânicos a utilizar em atmosferas potencialmente explosivas
- Portaria nº 341/97 de 21 de Maio
- Portaria 131/2002 de 9 de Fevereiro – Regulamento de Construção de exploração de Postos de Abastecimento de Combustíveis
- Evaluación de los riesgos de Explosión – Servicio de Prevención Manconumado. Galp Energia España
- Manual técnico de Ambiente qualidade e Segurança do Posto de Abastecimento da Galp Energia
- Design, construction, modification, maintenance and decommissioning of filling stations- APEA and Energy Institute
- Trevor Kletz, Handbook of Toxic Materials Handling and Management, Marcel Dekker, New York, 1994
- Trevor Kletz, Lessons From Disaster: How Organizations Have no Memory and Accidents Recur, co-published by Institute of Chemical Engineers, Rugby, UK 1993

WEBBIBLIOGRAFIA

http://en.wikipedia.org/wiki/Piper_Alpha
http://home.versatel.nl/the_sims/54/pipera.htm
http://en.wikipedia.org/wiki/Seveso_disaster
http://www.hse.gov.uk/comah/accidents.htm
www.tno.nl/
http://mahbsrv.jrc.it/
http://www.gulin.com.br/manuais-confinadas.htm